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Abstract

Maximum variance unfolding (MVU) is an effective heuristic for dimensionality
reduction. It produces a low-dimensional representation of the data by maximiz-
ing the variance of their embeddings while preserving the local distances of the
original data. We show that MVU also optimizes a statistical dependence measure
which aims to retain the identity of individual observations under the distance-
preserving constraints. This general view allows us to design “colored” variants
of MVU, which produce low-dimensional representations for a given task, e.g.
subject to class labels or other side information.

1 Introduction

In recent years maximum variance unfolding (MVU), introduced by Saul et al. [1], has gained pop-
ularity as a method for dimensionality reduction. This method is based on a simple heuristic: max-
imizing the overall variance of the embedding while preserving the local distances between neigh-
boring observations. Sun et al. [2] show that there is a dual connection between MVU and the goal
of finding a fast mixing Markov chain. This connection is intriguing. However, it offers limited
insight as to why MVU can be used for data representation.

This paper provides a statistical interpretation of MVU. We show that the algorithm attempts to
extract features from the data which simultaneously preserve the identity of individual observations
and their local distance structure. Our reasoning relies on a dependence measure between sets of
observations, the Hilbert-Schmidt Independence Criterion (HSIC) [3].

Relaxing the requirement of retaining maximal information about individual observations, we are
able to obtain “colored” MVU. Unlike traditional MVU which takes only one source of informa-
tion into account, “colored” MVU allows us to integrate two sources of information into a single
embedding. That is, we are able to find an embedding that leverages between two goals:

• preserve the local distance structure according to the first source of information (the data);
• and maximally align with the second sources of information (side information).

Note that not all features inherent in the data are interesting for an ulterior objective. For instance,
if we want to retain a reduced representation of the data for later classification, then only those
discriminative features will be relevant. “Colored” MVU achieves the goal of elucidating primarily
relevant features by aligning the embedding to the objective provided in the side information. Some
examples illustrate this situation in more details:

• Given a-bag-of-pixels representation of images (the data), such as USPS digits, find an
embedding which reflects the categories of the images (side information).

• Given a vector space representation of texts on the web (the data), such as newsgroups, find
an embedding which reflects a hierarchy of the topics (side information).
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• Given a TF/IDF representation of documents (the data), such as NIPS papers, find an em-
bedding which reflects co-authorship relations between the documents (side information).

There is a strong motivation for not simply merging the two sources of information into a single
distance metric: Firstly, the data and the side information may be heterogenous. It is unclear how
to combine them into a single distance metric; Secondly, the side information may appear in the
form of similarity rather than distance. For instance, co-authorship relations is a similarity between
documents (if two papers share more authors, they tends to be more similar), but it does not induce
a distance between the documents (if two papers share no authors, we cannot assert they are far
apart). Thirdly, at test time (i.e. when inserting a new observation into an existing embedding) only
one source of information might be available, i.e. the side information is missing.

2 Maximum Variance Unfolding

We begin by giving a brief overview of MVU and its projection variants, as proposed in [1]. Given
a set of m observations Z = {z1, . . . , zm} ⊆ Z and a distance metric d : Z × Z → [0,∞) find an
inner product matrix (kernel matrix) K ∈ Rm×m with K � 0 such that

1. The distances are preserved, i.e. Kii + Kjj − 2Kij = d2
ij for all (i, j) pairs which are

sufficiently close to each other, such as the n nearest neighbors of each observation. We
denote this set byN . We will also useN to denote the graph formed by having these (i, j)
pairs as edges.

2. The embedded data is centered, i.e. K1 = 0 (where 1 = (1, . . . , 1)> and 0 = (0, . . . , 0)>).
3. The trace of K is maximized (the maximum variance unfolding part).

Several variants of this algorithm, including a large scale variant [4] have been proposed. By and
large the optimization problem looks as follows:

maximize
K�0

trK subject to K1 = 0 and Kii + Kjj − 2Kij = d2
ij for all (i, j) ∈ N . (1)

Numerous variants of (1) exist, e.g. where the distances are only allow to shrink, where slack vari-
ables are added to the objective function to allow approximate distance preserving, or where one uses
low-rank expansions of K to cope with the computational complexity of semidefinite programming.

A major drawback with MVU is that its results necessarily come as somewhat of a surprise. That is,
it is never clear before invoking MVU what specific interesting results it might produce. While in
hindsight it is easy to find an insightful interpretation of the outcome, it is not a-priori clear which
aspect of the data the representation might emphasize. A second drawback is that while in general
generating brilliant results, its statistical origins are somewhat more obscure. We aim to address
these problems by means of the Hilbert-Schmidt Independence Criterion.

3 Hilbert-Schmidt Independence Criterion

Let sets of observations X and Y be drawn jointly from some distribution Prxy . The Hilbert-
Schmidt Independence Criterion (HSIC) [3] measures the dependence between two random vari-
ables, x and y, by computing the square of the norm of the cross-covariance operator over the
domain X × Y in Hilbert Space. It can be shown, provided the Hilbert Space is universal, that this
norm vanishes if and only if x and y are independent. A large value suggests strong dependence
with respect to the choice of kernels.

Let F and G be the reproducing kernel Hilbert Spaces (RKHS) on X and Y with associated kernels
k : X × X → R and l : Y × Y → R respectively. The cross-covariance operator Cxy : G 7→ F is
defined as [5]

Cxy = Exy [(k(x, ·)− µx)(l(y, ·)− µy)] , (2)

where µx = E[k(x, ·)] and µy = E[l(y, ·)]. HSIC is then defined as the square of the Hilbert-
Schmidt norm of Cxy , that is HSIC(F ,G,Prxy) := ‖Cxy‖2HS . In term of kernels HSIC is

Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)]− 2Exy[Ex′ [k(x, x′)]Ey′ [l(y, y′)]]. (3)
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Given the samples (X, Y ) = {(x1, y1), . . . , (xm, ym)} of size m drawn from the joint distribution,
Prxy , an empirical estimate of HSIC is [3]

HSIC(F ,G, Z) = (m− 1)−2 trHKHL, (4)

where K,L ∈ Rm×m are the kernel matrices for the data and the labels respectively, and Hij =
δij −m−1 centers the data and the labels in the feature space. (For convenience, we will drop the
normalization and use trHKHL as HSIC.)

HSIC has been used to measure independence between random variables [3], to select features or to
cluster data (see the Appendix for further details). Here we use it in a different way:

We try to construct a kernel matrix K for the dimension-reduced data X which
preserves the local distance structure of the original data Z, such that X is maxi-
mally dependent on the side information Y as seen from its kernel matrix L.

HSIC has several advantages as a dependence criterion. First, it satisfies concentration of measure
conditions [3]: for random draws of observation from Prxy , HSIC provides values which are very
similar. This is desirable, as we want our metric embedding to be robust to small changes. Second,
HSIC is easy to compute, since only the kernel matrices are required and no density estimation is
needed. The freedom of choosing a kernel for L allows us to incorporate prior knowledge into the
dependence estimation process. The consequence is that we are able to incorporate various side
information by simply choosing an appropriate kernel for Y .

4 Colored Maximum Variance Unfolding

We state the algorithmic modification first and subsequently we explain why this is reasonable: the
key idea is to replace trK in (1) by trKL, where L is the covariance matrix of the domain (side
information) with respect to which we would like to extract features. For instance, in the case of
NIPS papers which happen to have author information, L would be the kernel matrix arising from
coauthorship and d(z, z′) would be the Euclidean distance between the vector space representations
of the documents. Key to our reasoning is the following lemma:

Lemma 1 Denote by L a positive semidefinite matrix in Rm×m and let H ∈ Rm×m be defined as
Hij = δij −m−1. Then the following two optimization problems are equivalent:

maximize
K

trHKHL subject to K � 0 and constraints on Kii + Kjj − 2Kij . (5a)

maximize
K

trKL subject to K � 0 and constraints on Kii + Kjj − 2Kij and K1 = 0. (5b)

Any solution of (5b) solves (5a) and any solution of (5a) solves (5b) after centering K← HKH.

Proof Denote by Ka and Kb the solutions of (5a) and (5b) respectively. Kb is feasible for (5a) and
trKbL = trHKbHL. This implies that trHKaHL ≥ trHKbHL. Vice versa HKaH is feasible
for (5b). Moreover trHKaHL ≤ trKbL by requirement on the optimality of Kb. Combining both
inequalities shows that trHKaHL = trKbL, hence both solutions are equivalent.

This means that the centering imposed in MVU via constraints is equivalent to the centering in
HSIC by means of the dependence measure trHKHL itself. In other words, MVU equivalently
maximizes trHKHI, i.e. the dependence between K and the identity matrix I which corresponds
to retain maximal diversity between observations via Lij = δij . This suggests the following colored
version of MVU:

maximize
K

trHKHL subject to K � 0 and Kii + Kjj − 2Kij = d2
ij for all (i, j) ∈ N . (6)

Using (6) we see that we are now extracting a Euclidean embedding which maximally depends on
the coloring matrix L (for the side information) while preserving local distance structure. A second
advantage of (6) is that whenever we restrict K further, e.g. by only allowing for K be part of a
linear subspace formed by the principal vectors in some space, (6) remains feasible, whereas the
(constrained) MVU formulation may become infeasible (i.e. K1 = 0 may not be satisfied).
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5 Dual Problem

To gain further insight into the structure of the solution of (6) we derive its dual problem. Our
approach uses the results from [2]. First we define matrices Eij ∈ Rm×m for each edge (i, j) ∈ N ,
such that it has only four nonzero entries Eij

ii = Eij
jj = 1 and Eij

ij = Eij
ji = −1. Then the distance

preserving constraint can be written as trKEij = d2
ij . Thus we have the following Lagrangian:

L = trKHLH + trKZ−
∑

(i,j)∈N

wij(trKEij − d2
ij)

= trK(HLH + Z−
∑

(i,j)∈N

wijEij) +
∑

(i,j)∈N

wijd
2
ij where Z � 0 and wij ≥ 0. (7)

Setting the derivative of L with respect to K to zero, yields HLH + Z −
∑

(i,j)∈N wijEij = 0.
Plugging this condition into (7) gives us the dual problem.

minimize
wij

∑
(i,j)∈N

wijd
2
ij subject to G(w) � HLH where G(w) =

∑
(i,j)∈N

wijEij . (8)

Note that G(w) amounts to the Graph Laplacian of a weighted graph with adjacency matrix given
by w. The dual constraint G(w) � HLH effectively requires that the eigen-spectrum of the graph
Laplacian is bounded from below by that of HLH.

We are interested in the properties of the solution K of the primal problem, in particular the num-
ber of nonzero eigenvalues. Recall that at optimality the Karush-Kuhn-Tucker conditions imply
trKZ = 0, i.e. the row space of K lies in the null space of Z. Thus the rank of K is upper bounded
by the dimension of the null space of Z.

Recall that Z = G(w) − HLH � 0, and by design G(w) � 0 since it is the graph Laplacian
of a weighted graph with edge weights wij . If G(w) corresponds to a connected graphs, only one
eigenvalue of G(w) vanishes. Hence, the eigenvectors of Z with zero eigenvalues would correspond
to those lying in the image of HLH. If L arises from a label kernel matrix, e.g. for an n-class
classification problem, then we will only have up to n vanishing eigenvalues in Z. This translates
into only up to n nonvanishing eigenvalues in K.

Contrast this observation with plain MVU. In this case L = I, that is, only one eigenvalue of
HLH vanishes. Hence it is likely that G(w)−HLH will have many vanishing eigenvalues which
translates into many nonzero eigenvalues of K. This is corroborated by experiments (Section 7).

6 Implementation Details

In practice, instead of requiring the distances to remain unchanged in the embedding we only require
them to be preserved approximately [4]. We do so by penalizing the slackness between the original
distance and the embedding distance, i.e.

maximize
K

trHKHL − ν
∑

(i,j)∈N

(
Kii + Kjj − 2Kij − d2

ij

)2
subject to K � 0 (9)

Here ν controls the tradeoff between dependence maximization and distance preservation. The
semidefinite program usually has a time complexity up to O(m6). This renders direct implementa-
tion of the above problem infeasible for anything but toy problems. To reduce the computation, we
approximate K using an orthonormal set of vectors V (of size m×n) and a smaller positive definite
matrix A (of size n × n), i.e. K = VAV>. Conveniently we choose the number of dimensions n
to be much smaller than m (n� m) such that the resulting semidefinite program with respect to A
becomes tractable (clearly this is an approximation).

To obtain the matrix V we employ a regularization scheme as proposed in [4]. First, we construct a
nearest neighbor graph according to N (we will also refer to this graph and its adjacency matrix as
N ). Then we form V by stacking together the bottom n eigenvectors of the graph Laplacian of the
neighborhood graph viaN . The key idea is that neighbors in the original space remain neighbors in
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the embedding space. As we require them to have similar locations, the bottom eigenvectors of the
graph Laplacian provide a set of good bases for functions smoothly varying across the graph.

Subsequent to the semidefinite program we perform local refinement of the embedding via gradient
descent. Here the objective is reformulated using an m× n dimensional vector X, i.e. K = XX>.
The initial value X0 is obtained using the n leading eigenvectors of the solution of (9).

7 Experiments

Ultimately the justification for an algorithm is practical applicability. We demonstrate this based on
three datasets: embedding of digits of the USPS database, the Newsgroups 20 dataset containing
Usenet articles in text form, and a collection of NIPS papers from 1987 to 1999.1 We compare
“colored” MVU (also called MUHSIC, maximum unfolding via HSIC) to MVU [1] and PCA, high-
lighting places where MUHSIC produces more meaningful results by incorporating side informa-
tion. Further details, such as effects of the adjacency matrices and a comparison to Neighborhood
Component Analysis [6] are relegated to the appendix due to limitations of space.

For images we use the Euclidean distance between pixel values as the base metric. For text docu-
ments, we perform four standard preprocessing steps: (i) the words are stemmed using the Porter
stemmer; (ii) we filter out common but meaningless stopwords; (iii) we delete words that appear in
less than 3 documents; (iv) we represent each document as a vector using the usual TF/IDF (term
frequency / inverse document frequency) weighting scheme. As before, the Euclidean distance on
those vectors is used to find the nearest neighbors.

As in [4] we construct the nearest neighbor graph by considering the 1% nearest neighbors of each
point. Subsequently the adjacency matrix of this graph is symmetrized. The regularization parameter
ν as given in (9) is set to 1 as a default. Moreover, as in [4] we choose 10 dimensions (n = 10)
to decompose the embedding matrix K. Final visualization is carried out using 2 dimensions. This
makes our results very comparable to previous work.

USPS Digits This dataset consists of images of hand written digits of a resolution of 16×16 pixels.
We normalized the data to the range [−1, 1] and used the test set containing 2007 observations. Since
it is a digit recognition task, we have Y ∈ [0, . . . , 9]. Y is used to construct the matrix L by applying
the kernel k(y, y′) = δy,y′ . This kernel further promotes embedding where images from the same
class are grouped tighter. Figure 1 shows the results produced by MUHSIC, MVU and PCA.

The overall properties the embeddings are similar across the three methods (‘2’ on the left, ‘1’ on the
right, ‘7’ on top, and ‘8’ at the bottom). Arguably MUHSIC produces a clearer visualization. For
instance, images of ‘5’ are clustered tighter in this case than the other two methods. Furthermore,
MUHSIC also results in much better separation between images from different classes. For instance,
the overlap between ‘4’ and ‘6’ produce by MVU and PCA are largely reduced by MUHSIC. Similar
results also hold for ‘0’ and ‘5’.

Figure 1 also shows the eigenspectrum of K produced by different methods. The eigenvalues are
sorted in descending order and normalized by the trace of K. Each patch in the color bar represents
an eigenvalue. We see that MUHSIC results in 3 significant eigenvalues, MVU results in 10, while
PCA produces a grading of many eigenvalues (as can be seen by an almost continuously changing
spectrum in the spectral diagram). This confirms our reasoning of Section 5 that the spectrum
generated by MUHSIC is likely to be considerably sparser than that of MVU.

Newsgroups This dataset consists of Usenet articles collected from 20 different newsgroups. We
use a subset of 2000 documents for our experiments (100 articles from each newsgroup). We remove
the headers from the articles before the preprocessing while keeping the subject line. There is a clear
hierarchy in the newsgroups. For instance, 5 topics are related to computer science, 3 are related
to religion, and 4 are related to recreation. We will use these different topics as side information
and apply a delta kernel k(y, y′) = δy,y′ on them. Similar to USPS digits we want to preserve the
identity of individual newsgroups. While we did not encode hierarchical information for MVU we
recover a meaningful hierarchy among topics, as can be seen in Figure 2.

1Preprocessed data are available at http://www.it.usyd.edu.au/∼lesong/muhsic datasets.html.
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Figure 1: Embedding of 2007 USPS digits produced by MUHSIC, MVU and PCA respectively.
Colors of the dots are used to denote digits from different classes. The color bar below each figure
shows the eigenspectrum of the learned kernel matrix K.

Figure 2: Embedding of 2000 newsgroup articles produced by MUHSIC, MVU and PCA respec-
tively. Colors and shapes of the dots are used to denote articles from different newsgroups. The
color bar below each figure shows the eigenspectrum of the learned kernel matrix K.

A distinctive feature of the visualizations is that MUHSIC groups articles from individual topics
more tightly than MVU and PCA. Furthermore, the semantic information is also well preserved by
MUHSIC. For instance, on the left side of the embedding, all computer science topics are placed
adjacent to each other; comp.sys.ibm.pc.hardware and comp.os.ms-windows.misc are adjacent and
well separated from comp.sys.mac.hardware and comp.windows.x and comp.graphics. The latter is
meaningful since Apple computers are more popular in graphics (so are X windows based systems
for scientific visualization). Likewise we see that on the top we find all recreational topics (with
rec.sport.baseball and rec.sport.hockey clearly distinguished from the rec.autos and rec.motorcycles
groups). A similar adjacency between talk.politics.mideast and soc.religion.christian is quite inter-
esting. The layout suggests that the content of talk.politics.guns and of sci.crypt is quite different
from other Usenet discussions.

NIPS Papers We used the 1735 regular NIPS papers from 1987 to 1999. They are scanned from
the proceedings and transformed into text files via OCR. The table of contents (TOC) is also avail-
able. We parse the TOC and construct a coauthor network from it. Our goal is to embed the papers
by taking the coauthor information into account. As kernel k(y, y′) we simply use the number of
authors shared by two papers. To illustrate this we highlighted some known researchers. Further-
more, we also annotated some papers to show the semantics revealed by the embedding. Figure 3
shows the results produced by MUHSIC, MVU and PCA.

All three methods correctly represent the two major topics of NIPS papers: artificial systems, i.e.
machine learning (they are positioned on the left side of the visualization) and natural systems,
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i.e. computational neuroscience (which lie on the right). This is be confirmed by examining the
highlighted researchers. For instance, the papers by Smola, Schölkopf and Jordan are embedded on
the left, whereas the many papers by Sejnowski, Dayan and Bialek can be found on the right.

Unique to the visualization of MUHSIC is that there is a clear grouping of the papers by researchers.
For instance, papers on reinforcement learning (Barto, Singh and Sutton) are on the upper left corner;
papers by Hinton (computational cognitive science) are near the lower left corner; and papers by
Sejnowski and Dayan (computational neuroscientists) are clustered to the right side and adjacent
to each other. Interestingly, papers by Jordan (at that time best-known for his work in graphical
models) are grouped close to the papers on reinforcement learning. This is because Singh used to be
a postdoc of Jordan. Another interesting trend is that papers on new fields of research are embedded
on the edges. For instance, papers on reinforcement learning (Barto, Singh and Sutton), are along
the left edge. This is consistent with the fact that they presented some interesting new results during
this period (recall that the time period of the dataset is 1987 to 1999).

Note that while MUHSIC groups papers according to authors, thereby preserving the macroscopic
structure of the data it also reveals the microscopic semantics between the papers. For instance, the
4 papers (numbered from 6 to 9 in Figure 3) by Smola, Scholköpf, Hinton and Dayan are very close
to each other. Although their titles do not convey strong similarity information, these papers all used
handwritten digits for the experiments. A second example are papers by Dayan. Although most of
his papers are on the neuroscience side, two of his papers (numbered 14 and 15) on reinforcement
learning can be found on the machine learning side. A third example are papers by Bialek and
Hinton on spiking neurons (numbered 20, 21 and 23). Although Hinton’s papers are mainly on the
left, his paper on spiking Boltzmann machines is closer to Bialek’s two papers on spiking neurons.

8 Discussion
In summary, MUHSIC provides an embedding of the data which preserves side information possibly
available at training time. This way we have a means of controlling which representation of the
data we obtain rather than having to rely on our luck that the representation found by MVU just
happens to match what we want to obtain. It makes feature extraction robust to spurious interactions
between observations and noise (see the appendix for an example of adjacency matrices and further
discussion). A fortuitous side-effect is that if the matrix containing side information is of low rank,
the reduced representation learned by MUHSIC can be lower rank than that obtained by MVU, too.
Finally, we showed that MVU and MUHSIC can be formulated as feature extraction for obtaining
maximally dependent features. This provides an information theoretic footing for the (brilliant)
heuristic of maximizing the trace of a covariance matrix [1].

The notion of extracting features of the data which are maximally dependent on the original data
is far more general than what we described in this paper. In particular, one may show that feature
selection [7] and clustering [8] can also be seen as special cases of this framework.
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